Charge-exchange experiments at intermediate energies using high-resolution spectrometers

Remco Zegers

SHARAQ @ RIBF

With...

NSCL Charge-Exchange group program

- CE reactions on stable nuclei:
 - (t,³He)
 - (³He,t) RCNP
- CE reaction on unstable nuclei (inverse kinematics)
 - (⁷Li,⁷Be)
 - (p,n)

Isovector transitions

- isospin transfer: $\Delta T=1$
- Angular momentum transfer: Δ L=0,1,2,3...
 - \bullet Near $\theta_{cm}\text{=}0$ and E~100 MeV/u low ΔL is preferred
- spin-transfer: Δ S=0 or Δ S=1

$\Delta J = \Delta L + \Delta S$

ΔT	ΔL	ΔS	$0^{+} \rightarrow J^{\pi}$	Γ	
1	0	0	O ⁺ Fermi transitions		$^{A}_{7}X$ $^{A}_{7-1}X$
1	0	1	1 ⁻ Gamow-Teller	V N	³ H exchange ³ He
1	1	0	1 ⁻ dipole		reaction
1	1	1	0 ⁻ 1 ⁻ 2 ⁻ spin-dipole		$\left(\frac{d\sigma}{d\Omega}(q=0)\right)_{(t^3, He)} = \hat{\sigma} B(GT)$
1	2	0	2⁺quadrupole		$A_{X} \qquad \beta + decay \qquad \qquad A_{X} \qquad electron \qquad A_{X}$
1	2	1	1⁺,2⁺,3⁺ spin-quadrupole		² ^e ^{capture 2-1[×]}

•v Z-1^

Motivations

- Astrophysics: weak reaction rates
 - ec-captures in type la & ll Supernovae
 - Neutron-star crust
 - S-process
 - Neutrino interactions

64Zn(t,³He) Hitt et al. Phys.Rev. C 80, 014313 (2009)

Nuclear structure

• GT transitions are a good tool to investigate the nature of wave-functions near shell crossings in a model-independent manner

6

(t,³He) reactions

S800-SHARAQ in high-resolution (dispersion-matched) mode

	S800	SHARAQ (high resolution)
configuration	QQDD	QQDQD
Maximum Rigitidy (Tm)	4	6.8
Dispersion (cm/%)	10	5.86
Momentum Resolution (object size of 0.5 mm)	1/20000	1/147000 (1/8100 achieved)
Energy Resolution* (RI Beam)	1800-3400	?
angular resolution (prim. beam) (dispersive/nondispersive)	0.5/1.7 mrad	~ 1/1 mrad
angular resolution (RI beam)** (dispersive/nondispersive)	1/7 mrad Beam & tune dep.	?
Momentum acceptance	6%	2%
Angular acceptance (dispersive/nondispersive)	7 °/10°	2º/6º

(t,³He) at the S800 spectrometer

• dispersion matching: ~3 MeV $\Delta E_{triton} \Rightarrow \sigma_{F}(t, {}^{3}He)$ ~ 250 keV

• raytracing with 5th order map ~1° angular resolution

position at target in non-dispersive direction (cm)

High-resolution (t,³He) @ SHARAQ

- Some things to consider
 - High energy (300 AMeV) -> reduced absolute resolution
 - Leverage yield against quality?
 - High energy: simpler reaction mechanism but less experience
 - Optical potentials
 - Unit cross sections
 (no comparable (3He,t) probe)
 - Tracking? Rate limited to ~10⁶

(⁷Li,⁷Be+γ) in inverse kinematics

• Measure heavy residual in S800

- dispersion matching resolution ~ 1 MeV
 - Affected by decay-flight
 - Affected by energy loss in target
- thin target 2.5-5 mg/cm²
- tag with 0.43 MeV γ in SeGA

close-packed configuration (ε~12%) Experiments:

- ³⁴P(⁷Li,⁷Be+γ) analysis finished
- ¹²B(⁷Li,⁷Be+γ) Oct. 2009

$(^{7}Li,^{7}Be+\gamma)$ @ SHARAQ (using GRAPE?)

advantages

- High energy -> thicker targets
- High energy -> less charge-state events
- High energy -> tracking detectors affect beam less
- High energy -> reaction mechanism simpler

For high A,E high rate tracking is needed (diamond detectors?) at both S800/SHARAQ

disadvantages

- High energy -> reduced absolute energy resolution
- High energy -> stronger forward boosting -> reduced c.m. angular resolution
- High energy -> less efficiency for Dopplerboosted photons
- High energy ->no experience in forward kinematics

(p,n) inverse kinematics – LENDA Low-Energy Neutron Detector Array

- 24 plastic scintillators (2.5x4.5x30cm)
- Neutrons > 130 keV
 - $\Delta E \approx 20$ keV for $E_n = 200$ keV
 - $\Delta \theta_{\text{lab}} < 2^{\circ}$
 - Efficiency >30% for E_n<4 MeV
- Construction finished Summer 2009

Working group for the high-resolution spectrometer (S800) at FRIB

- Explore, develop and design the necessary infrastructure for experiments at FRIB that utilize the high-resolution spectrometer (S800)
- Advocate the needs for the science program with the high-resolution spectrometer at FRIB to the community
- Initial Contacts: Daniel Bazin, Alexandra Gade, Remco Zegers

Website available soon. Please join!